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Abstract
We report on our efforts building a new, large proof-repair dataset and benchmark suite for the
Coq proof assistant. The dataset is made up of Git commits from open-source projects with old
and new versions of definitions and proofs aligned across commits. Building this dataset has been
a significant undertaking, highlighting a number of challenges and gaps in existing infrastructure.
We discuss these challenges and gaps, and we provide recommendations for how the proof assistant
community can address them. Our hope is to make it easier to build datasets and benchmark suites
so that machine-learning tools for proofs will move to target the tasks that matter most and do so
equitably across proof assistants.
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1 Introduction

Machine learning (ML) is coming for proofs. Recent years have seen a surge in interest in ML
for proofs – one reflected by the many recent research venues [7, 4, 12], papers [26, 45, 37],
tools [2, 13, 35], industrial research groups [47, 5], and funding opportunities [3, 6] centering
on or prominently featuring ML for proofs. The surge in interest blurs the line between
proofs and data so that any proof development, once released, may itself become data to
improve proof automation for future proof developments.
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26:2 Proof Repair Infrastructure for Supervised Models

Figure 1 Changes made to a lemma by a participant in a recent user study of proof engineers,
from the REPLica user study paper [52].

We in the proof engineering community have agency in how this surge of interest plays out.
We can develop datasets and benchmark suites that steer the ML community toward the tasks
that matter most. We can build infrastructure that makes it easy to develop those datasets
and benchmark suites, or to work on those tasks. And we can build evaluation methodologies
that measure success on those tasks in ways that truly matter, so that state-of-the-art results
on benchmarks will transfer smoothly to real-world improvements in proof automation.

This paper takes a step in that direction. In particular, it presents the initial release
of Proof Repair Infrastructure for Supervised Models (PRISM) – a dataset and benchmark
suite for an important proof automation task in Coq: proof repair [49], which comprises
the automatic correction of proofs in response to breaking changes in programs or specifi-
cations. Proof repair is crucially important for reducing costs in large proof developments
and for enabling the application of formal methods to broader and more diverse contexts.
Unfortunately, data for proof repair is scarce and challenging to collect [52]. This paper
highlights the challenges involved in collecting repair data with an emphasis on how the proof
engineering community can adapt to those challenges as ML becomes increasingly relevant.
Its contributions are the following:
1. an initial release of a Coq proof repair dataset and benchmark suite accessible to ML

experts (Section 3),
2. reusable tools for building and extracting information from Coq projects (Section 4), and
3. a discussion of the challenges we encountered and how to overcome them (Section 5).
Our overarching goal is to build the infrastructure and proof assistant community support
we need to steer the ML community toward the tasks that matter most (Section 2).

2 Overview

The necessity and difficulty of proof maintenance has been borne out empirically. A recent
user study of eight intermediate through expert proof engineers showed that maintenance
happened constantly for participating proof engineers during proof development [52] and
that even experts sometimes gave up in the face of change [49].
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Consider, for example, the change in Figure 1, in which a user study participant updated a
lemma statement in response to a change in a dependency. As noted in the user study paper,
this was part of a larger change, with 10 other definitions or lemma statements changing in
analogous ways. Furthermore, this change broke at least five proofs, four of which the user
study participant – an expert proof engineer – admitted or aborted rather than repair.

The ubiquity of maintenance and the challenges of repair have been largely neglected
in ML tools for proofs. ML tools for proofs have instead historically fixated on tasks like
predicting tactics or automatically formalizing natural language [13, 37, 45]. The lack of a
good dataset and benchmark suite obstructs progress; what currently exists is not sufficient
for training and evaluating proof repair models (see Section 6). If the datasets and benchmark
suites are not fit for maintenance tasks, the ML community may neglect those tasks entirely,
instead chasing state-of-the-art results on tasks for which existing benchmark suites suffice.

Our experiences interacting with ML experts and building datasets ourselves suggest that
the choice of datasets and benchmark suites for a domain is not driven solely by what is
likely to be useful – it is also driven by barriers imposed by infrastructure, lack of domain
expertise, or social factors. Things we may take for granted, like parsing and checking proofs,
can become prohibitive infrastructure challenges for ML experts.

In this paper, we describe our efforts to overcome these challenges and build a large proof
repair dataset for Coq. We also discuss the barriers we do encounter, and we describe both
how we overcome those barriers, and what kind of work the proof assistant community would
need to put in to make it so that they cease to be barriers at all.

We find this work especially prudent given that the danger of chasing benchmarks that
may not transfer to real life workflows has been realized quite dramatically in other domains,
from incorrect patches to programs [46] to incorrect clinical interpretation of x-ray results [67].
Furthermore, these challenges can influence not just the tasks that the ML community chooses
to tackle but even the very proof assistants for which the ML community chooses to build
supporting tools. It is in the community’s best interest to drive strong, practical results for
useful tasks in a way that is equitable across proof assistants.

Our hopes are twofold. First, we hope that our dataset will be immediately useful for
proof repair. Second, and perhaps more prudently, we hope our discussion of the challenges
involved in building it will serve as a call for action to improve infrastructure. The proof
engineering community can then ensure that ML experts focus on the automation tasks that
matter most to the community, that they measure success on those tasks in ways that transfer
smoothly to real-world usefulness, and that they do so equitably across proof assistants.

3 A Proof Repair Dataset

An initial release of the PRISM dataset and benchmark suite that we have assembled is
publicly available (see Supplementary Material); we will continue to update the release
with later versions as we mine more data. The task that PRISM focuses on is proof repair
(Section 3.1). The data comprise aligned Git commits that correspond to existing changes in
proof developments found on GitHub (Section 3.2). Success on the resulting benchmark is
evaluated in terms of successful proof checking for repaired proofs (Section 3.3).

3.1 The Task: Proof Repair
In ML, a task refers to a high-level input/output specification of what is being learned.
A dataset and benchmark suite typically organizes itself around a particular task while
remaining agnostic to the details of the model implementation.
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26:4 Proof Repair Infrastructure for Supervised Models

We define proof repair as an ML task with inputs comprising an old theorem statement,
proof of the old theorem, and a new theorem statement; and outputs comprising a proof
of the new theorem. Note that this particular task assumes that we already know how to
repair the theorem statement and its dependencies. We could also consider a second task
that allows the model to repair the specification itself. This second repair task would be
harder to evaluate, so we do not focus our benchmark suite on it at this time, even though
PRISM supports it.

Inputs. We aim to provide sufficient context in the data to support a wide range of ML
approaches. At a high level, the input to the ML repair model is the entire state of a project
where the approach dictates how much of this state (and in what form) actually reaches the
model. More precisely, the input comprises the statement of the theorem whose proof should
be repaired, any contextual definitions on which it depends, the step-by-step (and subgoals)
goals and hypotheses for each sentence in the old proof, and known changes to the project
up to and including changes in the theorem statement and its dependencies. For each of
these components, we supply raw text representations, abstract syntax trees (ASTs), and
identifiers. In the case of goals and hypotheses, serialized Coq kernel representations supply
detailed internal proof states. Environmental dependencies such as Coq compiler versions are
captured for errors induced by external application programming interface (API) changes.

Outputs. The ultimate output is the repaired proof, which takes the form of text that
may be generated one sentence at a time, all at once, or through targeted modifications of
existing sentences. In the case of supervised repair learning, we supply ground truth targets
in the same form as the inputs: raw text, ASTs, etc. for the entire repaired project’s state
(compactly represented as a “diff” relative to the input). Sufficient context is provided in the
data to programmatically execute up to the error in an interactive REPL such as coqtop or
sertop, where one may apply reinforcement learning akin to CoqGym [65].

3.2 The Data: Aligned Git Commits
The training and testing data comprise aligned Git commits for a selection of realistic Coq
projects. The initial release of PRISM spans just a few Coq projects and consists of roughly
200 unique changes. We are working to continue to grow PRISM in the short term to span
the 60 Coq projects listed in the appendix, and in the long term to reach even more projects
in the long term. An initial versions of the dataset and a summary of the projects we are
considering for the next version can be found in supplementary material.

Projects were originally selected by querying GitHub’s API for projects that contained
Coq source code, had a file called “Makefile” in the project’s root directory, and had at least
100 commits from which to mine repair data. Eventually, we also included projects from
CoqGym [65] and filtered to projects that were listed in OCaml Package Manager (opam)
repositories (opam acts as the primary distributor of Coq projects). We excluded projects
that did not contain any proofs, or that had ulterior motives in their builds (e.g., projects
that intended to test the performance of the Coq compiler coqc). We hope in the future to
include additional projects, though this will require us to support more build environments
and expand upon the work detailed in Section 4.2.

Repair Examples. Within each Coq project, the data comprises a number of repair examples
– that is, changes to definitions or proofs. A repair example is constructed by comparing
a definition or proof before and after a change. Since sentences and files may be moved,
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renamed, added, deleted, or otherwise altered between commits, they must first be aligned
to ensure the right changes are compared. This means that Vernacular commands in one
commit are assigned one-by-one to commands in another commit, where these assignments
may cross file boundaries. Note that each command may not get a partner, indicating that
it was either added or deleted. We describe this in more detail in Section 4.5.

After alignment, proof repair examples are constructed by partially applying changes,
e.g., by omitting the changes to a proof that accompanied a change to the proposition.
Thus, one pair of commits may give rise to multiple examples. The examples are compactly
represented by commit hashes and diffs that indicate the state before and after a repair.
This compact representation enables dissemination of the dataset without the accompanying
projects, although we note supplementary tools for efficiently extracting project data will
still be vitally important for eliminating redundant computations and effort in practice.

Data Split. ML datasets and benchmark suites often include a data split between training,
validation, and testing data. We do not commit to a split ahead of time, but we consider two
different ways of splitting data: across projects and chronologically within projects. These
two splits test two different kinds of generalization beyond the training data. We plan to
include defaults for both splits in the final release of PRISM.

The first split – across projects – chooses distinct sets of projects to use for training,
validation, and test data. This approach measures generalization of the learned model to new
projects not seen at training time. The second split – chronologically within projects – uses
the same set of projects for training and test data, but splits them by time of commit, so
that training data includes earlier commits, and testing data includes later commits for the
same projects. This approach measures generalization of the learned model to new changes
within a given project, when the model was trained on older data for that project.

3.3 The Metrics: Proof Checking
Changes in proof developments that break proofs can be fixed in two ways: by repairing the
proofs themselves or by repairing some other definition such as a program or specification [49].
PRISM includes both kinds of changes. We focus our benchmark suite on the former
(repairing proofs), as the metric for success is immediately clear. We hope our benchmark
suite will also be useful for the latter (repairing definitions), but we believe the problem of
choosing a good metric for success for repairing definitions to be an open research problem.

Repairing Proofs. We focus our benchmarks on the problem of repairing a proof script
assuming that the statement of the repaired theorem is already known. In this case, checking
the correctness of the repaired proof amounts to using Coq’s kernel to proof check the type of
the repaired proof against the type that represents the desired repaired theorem statement.

The proof checking metric is the same as that used for the standard CoqGym [65] proof
generation benchmark suite for Coq. This metric is sound and complete (up to the correctness
of Coq’s kernel with nonterminating proof scripts designated as incorrect): any proof that
checks with the desired type is a proof of the theorem the type encodes (soundness), and
all proofs that prove that theorem will check with the desired type (completeness).

For this flavor of proof repair, we are able to take advantage of the fact that proof checking
is a perfect oracle when the theorem statement is known. Perfect oracles have been hugely
beneficial for existing ML work for proof generation [26] and for early symbolic work on proof
repair when specifications do not change [53]. They continue to benefit ML for proof repair.
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Figure 2 Process of extraction for a Coq project commit.

Repairing Definitions. Helping users fix the definitions that the specification depends
on – or the theorem statement itself – is also desirable. The REPLica user study, for
example, found that 75% of the time proof engineers fixed a broken proof, they did so by
fixing something else, like a program or specification [52]. Supporting this use case may
actually be more helpful to proof engineers than supporting the original flavor of proof repair.
Unfortunately, existing metrics are insufficient for measuring success on this task:

The proof checking metric is insufficient when the repaired specification is unknown;
showing that a proof type checks is not meaningful unless we know its intended type.
The metric of exact equality with an expected repaired definition is too conservative, as
there are many equivalent ways to state the same theorems or write the same definitions.
Common notions of definitional or propositional equality in Coq are less conservative,
but are still too far from complete.
Pumpkin Pi [51] repairs definitions to be equivalent up to univalent transport, but
checking this automatically is undecidable.
Common natural language distance metrics like BLEU [42] are poor measures of success
in code tasks [24], so we expect them to be inadequate for proofs.

If you choose to evaluate a model for repairing definitions, we recommend a conservative
metric like exact or definitional equality to avoid the danger of chasing misleading benchmarks.
We hope to eventually develop a suitable less conservative metric, particularly one that
captures what makes a change “close to correct” for some suitable notion of correctness.

4 Building the Proof Repair Dataset

We now take a step back and describe the processes behind our data collection efforts.
As stated, the foundation of the dataset comprises open-source Coq projects. Mining the
commits of these projects eventually yields examples of refactors or repairs. Each project is
accompanied by per-commit metadata containing project dependencies, source URL, and
build commands that is in parts manually curated and programmatically inferred. The
process of generating repair data from a project comprises the following steps (see Figure 2):

We obtain a switch (opam virtual environment) that satisfies as many of the project’s
dependencies as possible using the Switch Manager (SwiM) (Section 4.1).
Once we have a switch, we run the build command in the generated switch to produce a
Built Project (Section 4.2).
We strace the build process to scrape the Physical Dependency Locations (IQR
flags) of each document in the project (Section 4.3).
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Using the IQR flags for each document in a built project along with the Coq serializer
SerAPI [8], we extract a Proof Context corresponding to each intermediate proof state
for the project by querying Coq’s state during the execution of proofs (Section 4.4).
Finally, we align changed proofs across commits and save those along with their interme-
diate proof contexts to arrive at an Aligned Repair Instance (Section 4.5).

Building this infrastructure was a significant undertaking with many challenges encountered
along the way; we discuss these challenges in Section 5. Our hope is that the infrastructure
we have built will make it easier to collect similar datasets in the future.

4.1 The Switch Manager
To extract information about projects like intermediate proof states, we must build them.
This requirement is nontrivial because different projects can depend on different versions of
Coq, the Ocaml compiler, or other dependencies.

To resolve dependencies and make it possible to build many different commits of one or
more projects, we introduce a novel SwiM capability that works in tandem with opam to
model the build environment for a given commit of a given project as a Python object. In
particular, the object models an opam switch, which is opam’s representation of an isolated
collection of installed packages.

This capability subverts the typical manual opam workflow to create and activate a
switch. This manual workflow would be intractable at the scale of hundreds of commits for
each of dozens of projects. With the SwiM, we can automate this functionality and extract a
dataset at scale.

Several benefits arise from the SwiM’s design. The SwiM enables build sandboxing by
providing switch clones that last for just the duration of the commit’s extraction, and it also
minimizes the time needed to obtain a clone by maintaining a pool of switches across all
threads with pre-installed packages, and choosing the one upon request that is closest to
satisfying a commit’s requirements. Implementation of this capability required reflection of
opam’s dependency formula parsing and evaluation logic from OCaml to Python.

As new commits are built, switches containing their dependencies are added to the
managed pool of switches. Since switches range in size from hundreds of megabytes to a few
gigabytes, a least-recently-used cache maintains the total disk consumption below an implicit
limit by deleting stale, infrequently used switches.

4.2 Built Projects
Using the switch provided by the SwiM and a build command from the metadata, we may
be able to build the project. Confounding issues that may prevent building include undefined
opam variables within dependency formulas. In practice, we have so far seen a build failure
rate of about 68%. We attempt to build each commit with seven different major versions of
Coq ranging from 8.9 to 8.15 corresponding to versions of SerAPI that support capabilities
we deemed necessary. Since Coq releases are rarely backwards compatible, many of the build
failures can be explained by the fact that each commit can only be expected to build for the
single Coq version for which it was written. Furthermore, since we pin one of the seven Coq
versions in the switch supplied by the SwiM, conflicting version requirements may yield an
opam command that has no solution. Consequently, some build errors are inevitable.

However, other errors are due to mistakes or missing information in the human-sourced
metadata. We plan to address this latter class of build errors over time by fixing problems
in the metadata through automated inference mechanisms. If the project build fails, we
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hope in the future to be able to recover proofs from the documents that built before the
failure as well as subsequent independent proofs. We are also exploring ways to automatically
recover from simple build errors such as dependency mismatches between the switch and the
project’s requirements by using the date the commit was made as a version hint.

4.3 Physical Dependency Locations (IQR Flags)
In order to run any of the Coq or SerAPI tools (e.g., coqc, coqtop, sertop) on a given Coq
source file, one or more flags regularly need to be passed to these commands to specify the
physical location of dependencies. These flags are described below:

The -I flag allows a directory to be added to the OCaml loadpath.
The -Q flag adds a physical directory to the loadpath and binds it to a given logical path.
The -R flag acts like the -Q flag, but also makes subdirectories available recursively.

In publicly available Coq projects, these flags (referred to as “IQR” flags from here on) are
specified in one or more build or configuration files. No single standardized approach for
specifying IQR flags exists, making it difficult to automatically infer them from configuration
and build files alone. While projects will be able to build successfully without our knowledge
of these flags, we must infer them to use SerAPI tools in other stages of our framework.

Our solution to this problem builds off an approach developed in IBM’s PyCoq [20].
Following PyCoq, we use strace to inspect the actual commands run during the build
process for a Coq project. Each build command is captured and any present IQR flags are
extracted using regular expressions. In some projects, build files may be nested, and IQR
flags may specify physical paths that are relative to the nested directories. We need to ensure
that the inferred IQR flags are relative to the project root directory, so before we store the
inferred IQR flags, their paths are resolved to the project root directory.

4.4 Proof Contexts
Once the project has been built, the individual Coq source files are parsed into sentences
and then interactively executed with sertop to capture intermediate proof states.

A parser (sercomp) is available through SerAPI, but it only works on Coq source files
whose dependencies are already compiled, which prohibits its use in recoveries from partial
builds. Furthermore, sercomp introduces significant redundant computation with respect
to sertop. As a more efficient alternative, we developed a simple regular-expression-based
“heuristic parser” to perform sentence extraction and approximate proof identification.

From sertop, we can collect thorough context from the document, like whitespace-
normalized text, ASTs, command types, and intermediate proof steps with goals and
hypotheses. Each command is accompanied by inferred identifiers of the command itself (e.g.,
an inductive type’s name and constructors) and a list of fully-qualified identifiers referenced
within the command, which enables models to more easily incorporate local context or apply
graph-based approaches. Accompanying source code locations allow for accurate provenance
of data and application of proposed repairs to appropriate destinations for testing.

4.5 Aligned Repair Instances
The last step in our data collection process is extracting proof repair examples from different
versions of projects, accounting for the fact that definitions and proofs may be changed,
moved, renamed, or deleted between commits. We must establish a robust mapping between
Vernacular commands in a pair of commits that preserves some notion of command identity.
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Our objective is similar to that of the “diff” utility, which describes changes made between
files. Where our objective differs is that we seek to match Vernacular commands rather than
lines, and we seek to do so within the entire project directory structure rather than a file.

A traditional order-preserving alignment between two sequences, e.g., the Smith-Waterman
algorithm [58], is not quite an appropriate approach to resolve this issue as it cannot correctly
align two independent definitions whose order has been reversed during a refactor (perhaps
due to an introduced dependency). Therefore, we approach the problem as a bipartite
matching or assignment between the unordered elements of two sets such that the overall
similarity of matched elements is maximized. We can formally specify the desired assignment
between two commits X and Y considered as respective sets of commands across one or
more files as the solution to the following optimization problem:

minimize:
U, W

∑
u∈U

C(u, f(u))

subject to: f : U ↔ W ∧ U ⊆ X ∧ W ⊆ Y ∧ ∥U∥ = min(∥X∥, ∥Y ∥) (1)

Here, C(x, y) is a non-negative cost function that measures the distance between the
commands x and y, and f is a bijection between subsets of X and Y – a partial alignment
between commands of X and Y . To align as many commands as possible, the domain of f

must have at least as many members of the smaller of X and Y , which is our final constraint
above. This optimization is an instance of the well-known assignment problem, which one
can solve exactly in polynomial time, e.g., with the Hungarian algorithm [41].

The optimization is parameterized by the choice of C, for which we choose a normalized
variant of the Levenshtein edit distance E:

C(x, y) = 2E(x, y)
∥x∥ + ∥y∥ + E(x, y) , (2)

where ∥x∥ and ∥y∥ give the character lengths of x and y considered as text (not including proof
bodies). This normalization is an instance of the biotope transform [22], which preserves the
metric properties (such as the triangle inequality) of the edit distance. We further threshold
the distance by a constant t such that Ct(x, t) = min{C(x, y), t}, which also preserves metric
properties [43]. After solving for f , commands x and y assigned to one another (f(x) = y)
with a cost of t are considered to be unassigned (i.e., we determine that x was dropped
between commits and y was added). We choose t = 0.4, which roughly corresponds to 50%
of a command’s text being changed before it is considered to have been dropped.

Solving this assignment problem for two entire commits can be costly: solving exactly is
cubic complexity, and calculating the edit distance between all pairs of commands from both
commits is necessarily quadratic complexity. Furthermore, the assignments produced may
be somewhat spurious, especially in the event of multiple global optima. We mitigate these
issues by applying the assignment problem only to those commands known to have changed
in some manner between the commits according to their intersection with a (Git) “diff”. The
final resolution of the problem is thus somewhere in between alignment and assignment.

Once we determine an alignment, we create examples of proof errors by leaving out
changes to individual proofs one at a time, thus providing the context for each change to a
proof that required repair but not the repair itself. The left-out change to the proof then
accompanies the error as a ground truth target for supervised learning.
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5 Challenges

Collecting and building datasets and benchmark suites for many tasks is still extremely
challenging, and it is challenging in a way that is not at all equitable across proof assistants.
Here, we discuss our experiences dealing with challenges encountered during the creation
of PRISM (Section 5.1), what we believe the Coq community can learn from other proof
assistant communities (Section 5.2), and how the proof assistant community at large could
address them more sustainably going forward (Section 5.3).

5.1 Our Experiences
The major challenges we faced in building this dataset and benchmark suite chiefly fall into two
categories: Project Management (Section 5.1.1) and Parsing & Serialization (Section 5.1.2).
For each of these categories, we discuss our experiences dealing with each stated challenge.

5.1.1 Project Management
One of the greatest barriers to building this dataset was the lack of a centralized archive for
Coq proof data. In the absence of this centralized archive, we resorted to looser collections
of projects organized by package management. The package manager opam gives us a
programmatic interface to build compatible environments for the dataset’s constituent
projects. However, it was designed to service individual developers using a few switches,
whereas we must spin up dozens of switches efficiently. We thus had to reimplement and
expand upon some of opam’s capabilities. We faced three challenges in so doing:
1. Significant build system variation across different proof developments;
2. Expressive dependencies in opam packages that complicate efficient installs;
3. Insufficient caching of opam build artifacts that necessitated copying switches to avoid

rebuilding the same packages.

Build System Variation. Over the years, the recommended build system for Coq proof
developments has been in flux. In 2019, for example, the Coq development team urged proof
engineers to move their proof developments to Dune [19]. This effort did not fully succeed,
and the documentation for the latest Coq version includes instructions for both Dune and the
native Coq build system [19]. The native build system itself has also changed over time, losing
compatibility with its previous versions. Because of this fragmented build infrastructure, we
had to employ extremely abstract methods to extract arguments for SerAPI tools, namely
by using strace to grab IQR flags passed to Coq’s compiler coqc (described in Section 4.3)
while making almost no assumptions about the process invoking coqc.

Expressive Dependencies. The opam package manager provides a powerful and expressive
syntax (package formulae) for packages to specify dependencies. Package formulae allow
developers to restrict the versions of dependencies that can be installed, to conjunct and
disjunct formulae into more complicated expressions, and to refer to variables declared
elsewhere in the environment. This feature benefits the library developer that can precisely
specify the environment for running code, but for our purposes it poses a challenge: packages
can be picky about their environments and force opam to rebuild existing libraries. Since we
need to install many versions of many packages, we need efficient ways to create or select
compatible switches, which means interpreting these formulae. As a result, we reimplemented
a majority of opam’s package formula features, including parsing the custom grammar for
package formulae and implementing package version comparison, to reason about which
existing switches would require the least time to install a given package with opam.



T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:11

Listing 1 A notation that breaks CoqIDE’s parser. This example was found in the Coq Dis-
course [17].
Notation "( a . b )" := (a, b).
Check (1 . 2).

Copying Switches. To work with conflicting packages or different versions of the same
packages, we must use different environments. The opam “switch” abstraction allows us to
sandbox environments, but creating many switches incurs exorbitant overhead as each new
switch rebuilds packages from source. Building a package once and deploying it in multiple
switches is preferable, but many executables built by opam contain their absolute path as a
hardcoded variable, which means they stop working if the name or location of the containing
switch changes. That is, a built opam package only necessarily works in one switch. Our
workaround is to copy switches and use the bwrap utility (which is also used internally in
opam) to bind-mount the copied switch over the original such that the clone is in the original
hardcoded location from the perspective of the running process. This solution allows copies of
switches to act as if they are the original. Of course, handling these cloned switches requires
extra bookkeeping and infrastructure, which the SwiM (Section 4.1) ultimately handles.

5.1.2 Parsing & Serialization
No matter how sophisticated the build system, we cannot get detailed data about individual
proofs without parsing Coq files and serializing proof state to text. SerAPI [8] is the de facto
standard for serializing Coq, providing a query protocol for exposing internal Coq data like
definitions in the global environment, syntax trees, goals, types, and more. We used the
CoqGym [65] Python wrapper as a starting point for our implementation, taking care to
decouple it from CoqGym’s custom versions of Coq and SerAPI since we need to support
multiple versions of each coinciding with chosen projects’ Git histories. This need to support
multiple versions of Coq exacerbated challenges arising from gaps in SerAPI’s query protocol,
requiring us to implement workarounds using the most public and arguably stable interface
Coq possesses: its Vernacular query commands. We faced four challenges related to parsing
& serialization:
1. Executing a file one Coq sentence at a time requires accurately parsing sentence

boundaries, but parsing requires execution: a catch-22.
2. Identifying dependencies between commands (e.g., which lemmas a theorem uses)

is critical to providing locally relevant repairs but is not a capability provided by SerAPI.
3. Determining the scope of a conjecture is complicated by the potential presence of

nested proofs/definitions and arbitrary grammar extensions.
4. SerAPI is experimental software, which leads to breaking changes between versions.

Parsing Sentence Boundaries. A Coq statement or “sentence” ends with a period (.), but
Coq also uses the symbol for import paths and module members so that one cannot identify
sentences in a file merely by splitting on periods. To further complicate matters, Coq boasts
an extensible syntax that enables users to define syntax that allows periods to show up in
even more situations. For example, Listing 1 defines syntax using a period that complicates
sentence splitting to the point where the latest version of CoqIDE – the official editor for Coq
– cannot correctly parse and run this code even though Coq can. We did not discover any
public or officially supported mechanism to extract the sentences of a Coq document, which
led us to develop the Python-based heuristic parser mentioned in Section 4.3 for simplicity
and maximal portability between build environments.
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Listing 2 A simple example showing that proofs may be interleaved and that multiple proofs
(obligations) may be associated with one term.
Require Coq.Program.Tactics.
Set Nested Proofs Allowed.
Program Definition foo := let x := _ : unit in _ : x = tt.
Next Obligation. (* Start first obligation of foo *)

Definition foobar : unit. (* Interject with new conjecture. *)
exact tt.
Next Obligation. (* Switch back to first obligation of foo *)

exact tt.
Qed. (* Finish proof of foo’s first obligation *)

Defined. (* Finish proof of foobar *)
Next Obligation. (* Start next obligation of foo *)

simpl; match goal with ⊢ ?a = _ ⇒ now destruct a end.
Qed. (* foo is defined *)

Identifying Command Dependencies. Identifying dependencies decomposes into two sub-
problems: detecting the definitions (if any) introduced by a given command and resolving
referenced names unambiguously.

No SerAPI query resolves the first subproblem, nor is there any reliable syntactic clue
in the text that generalizes across unforeseen grammar extensions. Instead, we rely upon
parsing user-level feedback that notes the introduction of new identifiers (e.g., “X is defined”)
and Vernacular queries. Since feedback is not guaranteed for all definition types (particularly
propositions, depending on the Coq version), we also monitor for changes in the set of all
locally defined names yielded from Vernacular Print All command. One can thus reliably
identify a command with names introduced immediately after its execution.

The second subproblem arises from the fact that identifiers within ASTs yielded from
SerAPI are not necessarily fully qualified. Correcting this deficiency requires locating the
identifiers within the AST and issuing a Vernacular Locate query for each one. Care must
be taken to ensure that variables within local binders, patterns, or other sub-expressions
do not get mistaken as any top-level definition that they may shadow. Given the lack of
insight available into Coq’s internal name resolution, the accuracy is ultimately limited by
handcrafted scope rules. We also note one restriction on resolving globally bound identifiers:
if a definition shadows an existing one, then it cannot also use the shadowed one. Violation
of this assumption is possible (consider a recursive function nat that expects arguments of
type nat) but not expected to pose a significant risk as it is unlikely in the first place and
would generally be considered poor practice. If the restriction is violated, then the shadowed
definition will simply be mistaken for its shadower within the shadower’s definition.

Determining Conjecture Scope. Determining conjecture scope decomposes into two sub-
problems: attribution of proof steps to the correct conjecture and detection of proof (conjec-
ture) completion. Each is complicated by potentially intermingled or nested proof steps as
shown in Listing 2 and by the lack of a SerAPI query of the active conjecture’s identity.

A Vernacular command – Show Conjectures – again provides the solution. This com-
mand lists the names of currently stated but unproved conjectures and by all observations is
guaranteed to list the conjecture actively being proved first. We rely upon this presumed order
to identify the current conjecture, accumulating proof steps in stacks per open conjecture.
The method’s accuracy depends upon the assumption that each conjecture enters proof
mode once its first sentence is executed. The only known exceptions to this rule comprise
Programs, which do not enter proof mode until their first Obligation’s proof is begun.
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Special handling is required to associate each Obligation with the correct Program since
Show Conjectures reveals a unique name for each Obligation. However, the special handling
means any grammar extension that defines its own Obligation or Program equivalents (e.g.,
multi-block proofs) cannot be serialized to the same level of accuracy. If any extension does
so, then each Obligation-equivalent is expected to be serialized as an unrelated theorem.

We rely upon detection of definitions to determine when and if a conjecture was proved,
assuming that no conjecture emits an identifier before it is defined (i.e., before it is proved).
Only subproofs (generally delimited by bullets and braces) are allowed to violate this rule.
However, one cannot assume that the first detected definition in the midst of a proof
corresponds to the conjecture, nor can one assume that the name of the conjecture once
defined will actually match its name as returned by Show Conjectures.

We ultimately detect the completion of a proof by requiring two conditions: a change in
the currently detected conjecture and the detection of a new definition. This rule necessarily
invokes an additional assumption: a change in the current conjecture implies that either a
new proof has begun or the current proof has ended (but not both). Since we assume that
conjectures cannot emit identifiers before they are done, we deduce that the emission of an
identifier upon the change of the current conjecture implies the completion of the prior one.

Finally, if the conjecture is aborted, then it will never be detected as a definition at all
even though its proof has ended. We detect aborted proofs simply by checking the type of
the command, assuming that no grammar extension defines Abort or Abort All equivalents.

Serialization and Version Changes. SerAPI was in theory supposed to help with proof
assistant versioning problems. In practice, though, SerAPI itself depends on the version of
Coq, and we found we had to break the SerAPI abstraction barrier often as the Coq version
changed. In other words, while SerAPI provides a convenient interface to expose certain Coq
internals, those internals are not necessarily stable. For example, SerAPI had “can’t-fix” bugs
involving nested proofs because the serialization errors occur in the Coq codebase itself [28].
SerAPI itself has as of a few days ago been deprecated in favor of a new serializer [29, 18].

5.2 Other Proof Assistants
Here, we discuss features in other proof assistants in the context of our experiences above.

Project Management. In summary, we are not aware of an elegant and effective solution to
package management for other proof assistants, but we believe Isabelle’s rich archival culture
sets a good example to follow. In Isabelle, the Archive of Formal Proofs (AFP) provides a
highly centralized, standard host for proof developments and eases their association with
metadata that may be useful for ML. The AFP also neatly versions proof developments for
every official release of Isabelle and semantically groups them in different folders. At the
time of writing, the AFP includes 725 proof developments [1], and it already forms the basis
of a static dataset for Isabelle [32]. We suspect the AFP would also make a very strong basis
for a proof repair dataset due to its neat versioning.

Agda possesses its own library management system, which it uses in combination with
Hackage, the Haskell package repository. Anecdotally, researchers we have spoken to cite
installation difficulties as a barrier to learning Agda. Lean also has its own package manager
but lacks advanced features to address the problems we faced. Isabelle in general takes
an IDE-centric approach to builds and other tooling [50, 60], but does include a notion of
sessions that can inherit from other sessions. The underlying functionality the IDE is based
on is also accessible in Scala and by command line. However, one of the authors has found
that students learning Isabelle/HOL in a proof automation course struggle to understand
how to build dependencies.
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Parsing & Serialization. A particularly successful example of an interoperable proof system
is MetaMath [39], whose syntax and semantics are so simple that its verifier has been
reimplemented in under 1000 lines of Python [61]. This and its centralized proof database
has made it a popular choice for ML experts as a benchmark for ML applications in theorem
proving [37, 45] as all barriers to serialization can be avoided by modifying a very small
parser/verifier. As a trade off, MetaMath does not have a comparable feature set to ITPs
like Coq, Lean or Isabelle.

More complicated and featureful ITPs have more varied methods: PISA [33] is a bleeding
edge Isabelle interaction and proof serialization tool written to support an ML experiment [32].
This complements scala-isabelle [57], an earlier, less ML-oriented tool which is also actively
maintained. As for Lean, PACT [31] presented a dataset (LeanStep) aimed at ML applications
that uses Lean’s meta-programming facilities to serialize Lean. LeanStep’s tools weigh under
1500 lines of code, which is light compared to line-counts for other serialization efforts.

5.3 Recommendations
Project Management. A strong archival effort is the best way forward, though even the
best archival infrastructures for proof assistants fall short in multiple ways. For example,
while Isabelle’s AFP makes a natural data source for ML tools for proofs, it does not include
any processes for informed consent – the datasets that build on it assume that all publicly
available data is fair game. While this assumption is standard in ML for programs and
proofs, it is not ideal; archival is a natural place to consider it.

In addition, though archival makes it possible to associate metadata with proof develop-
ments, little consideration is given to metadata that associates definitions and proofs across
versions of a proof development. Presently, we rely on package management tools such as
opam, which also posed challenges. Though a legitimate argument can be made that package
management targets a very different use case from ours and that existing tools are sufficient
for that use case, shared high-level libraries and tools on top of existing package managers
and in support of bulk efforts like our own would be especially advantageous since such
efforts are common when building ML datasets and tools. Nonetheless, package managers
themselves warrant some improvement. For example, the problem we encountered of copying
switches was due to poor caching of build dependencies, which itself was due to some degree
to hard-coding of paths.

Parsing & Serialization. The great flexibility afforded Coq by its extensible grammar allows
documents to be more human-friendly and readable, but the lack of syntactic assurances
introduces major headaches for automated systems. Ideally, future languages will be struc-
tured to be machine-readable human/compiler-out-of-the-loop or to at least provide a public
parsing API. For Coq, exposing the classification of a Vernacular command1 in SerAPI
would help substantially and obviate the need for many of the workarounds detailed above.

We also recommend a greater emphasis on backwards compatibility and backporting as
several useful and even critical features that exist in newer versions of Coq or SerAPI were
not suitable for our use. To this end, SerAPI is “still a research, experimental project, and
it is expected to evolve considerably” [27] For instance, future plans rebase SerAPI on the
language server protocol standard [29], which exposes features like document overviews that
appear to list all the definitions in the file and the ability to fold proofs, implying that it has
the capability to list theorems and gather the associated lines – one of our current challenges.

1 See the vernac_classification type.

https://github.com/coq/coq/blob/master/vernac/vernacextend.mli


T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:15

Overall. Based on our observations, we make the following broad recommendations for the
proof assistant community going forward:
1. Work with the Isabelle community to learn how to build centralized archives as

successful as the AFP for other proof assistants.
2. Include an informed consent form in any centralized archive that allows proof engineers

to opt in or out of their developments being used for ML tools.
3. Determine what kinds of metadata within and across proof developments would ease

the creation of ML tools for the tasks that matter most, make it easy to track that
metadata inside of any centralized archive, and create standard ways of associating
that metadata with proof developments even outside of centralized archives.

4. Establish or adopt open standards for managing proof developments and interfacing
with external tools like modern IDEs.

5. Develop tools based on these standards to enable extraction of metadata relevant to
ML tools from non-archival proof developments.

6. Help proof engineers port legacy proof developments to meet those standards, and
continue to work on tools for proof repair and reuse that ease this burden.

7. Consider building shared libraries and tools optimized for the problems of bulk builds.
8. Consider limiting the scope of possible dependency complexity.
9. Improve build caching across multiple or bulk builds, for example by avoiding hard-coded

paths seen in opam.
10. Consider opening conversations with language developers and companies inside and

outside of verification about their solutions for package management, distribution, and
release management, as these problems are pervasive across all software.

6 Related Work

Datasets & Benchmark Suites. The REPLica [52] user study collected incremental edit
data from eight proof engineers over the course of a month. Due to difficulties recruiting
participants, the dataset is too small for data-hungry ML tools. PRISM is less incremental,
but we expect the final version of the dataset to be much larger. The REPLica data may
make a useful supplement to PRISM.

A number of datasets and benchmark suites target autoformalization: the automatic
translation of natural language mathematics to formal mathematics. Autoformalization
datasets consisting of aligned natural and formal language include ProofNet [9] and the
Isabelle Parallel Corpus [15]. MiniF2F [68] includes math Olympiad problems formalized in
different proof assistants and is used as a benchmark for autoformalization and synthesis.

A few datasets and benchmark suites exist for proof synthesis, including CoqGym [65] for
Coq and HOList [11] for HOL Light. These datasets include static data from fixed project
versions. The distinguishing feature of PRISM is that it describes the project’s history, which
is necessary to produce repair examples.

We expect there is much that we can learn from ML for code, given the similarities
between code and proofs. A summary of recent work in this space can be found in a survey
paper on neurosymbolic programming [16]. Of particular interest for our work is the question
of whether code distance metrics like CodeBLEU [48] will work well for formal proof.

In the field of software engineering, accessible datasets facilitate new research. For
example, Defects4 [34] is a collection of bugs and patches in Java that is frequently used as a
benchmark for program repair [23, 59, 38]. We hope that PRISM will spur new research in
proof repair. We also hope that, by focusing on good benchmarks and metrics for success
early on, we can avoid some of the methodology challenges faced in program repair [46].
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Proof Repair. The ML task that our dataset focuses on is proof repair, which is summarized
in the namesake thesis [49]. There is not yet published work we are aware of for ML for
proof repair, though we are aware of ongoing work by other teams in proof assistants other
than Coq. We plan to train and evaluate at least two distinct proof repair models in Coq
using PRISM, and we hope that PRISM makes it easy for others to do the same.

Proof repair is closely related to work in proof reuse [25, 54, 14], proof refactoring [63, 62,
55], and proof transformation [44]. These and other related topics in proof engineering have
a long history, described in detail in the proof engineering survey paper QED at Large [50],
as well as in the proof repair namesake thesis [49].

Proof repair can be viewed as program repair [40, 30] for proofs. There is a large amount
of work on learning to repair programs, both symbolically (for example, in Getafix [10]) and
neurally (for example, in Break-It-Fix-It [66]). This work may provide useful insights when
building ML datasets, benchmark suites, and models for proof repair, though care must be
taken to consider the differences between typical programs and formal proof developments [49].

Machine Learning for Proofs. Advances in ML have had a transformative effect on many
fields, and theorem provers are not excluded. Examples of recent work on ML for synthesizing
formal proofs include GPT-f [45] and HTPS [36] for Metamath and Lean; Proverbot9001 [56],
ASTactic [65], Tactician [13], and DIVA [26] for Coq; and DeepHOL [11] for HOL Light.
Also of note is recent work on autoformalization in Isabelle/HOL [64], Lean [9], and Coq [21].
More ML work for proofs can be found in QED at Large [50]. Our main goal is to expand the
scope of tasks covered in ML for proofs, reaching important tasks not previously explored.

7 Conclusions & Future Work

We have described the initial version of a novel dataset and benchmark suite for the ML
task of proof repair centered around the Coq Proof Assistant. We expect later versions
of the data to be significantly larger than any existing alternative, spanning years-long
developments collected from a corpus of open-source Github repositories. We discussed
challenges that we encountered during the creation of the dataset and ramifications for
the proof engineering community going forward. The tools developed to overcome these
challenges enable subsequent expansion of the dataset with supplementary Coq projects and
are likely to be useful for creating and interfacing with datasets for other proof-related ML
tasks including, for example, proof synthesis.

Moving forward, our immediate plans are to continue to grow the dataset, and to release
the infrastructure we built for more general use. We also plan to use the dataset to build ML
models for proof repair in Coq. We would also like to develop better metrics for measuring
success at repairing definitions. Finally, we hope to work with the rest of the proof assistant
community to address the many challenges we have highlighted, so that we may steer ML
for proofs in the right direction.
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